Design of Nonlinear Dynamic Systems Using Surrogate Models of Derivative Functions

نویسندگان

  • Anand P. Deshmukh
  • James T. Allison
چکیده

Optimization of nonlinear (or linear state-dependent) dynamic systems often requires system simulation. In many cases the associated state derivative evaluations are computationally expensive, resulting in simulations that are significantly slower than real-time. This makes the use of optimization techniques in the design of such systems impractical. Optimization of these systems is particularly challenging in cases where control and physical systems are designed simultaneously. In this article, an efficient two-loop method, based on surrogate modeling, is proposed for solving dynamic system design problems with computationally expensive derivative functions. A surrogate model is constructed for only the derivative function instead of the complete system analysis, as is the case in previous studies. This approach addresses the most expensive element of system analysis (i.e., the derivative function), while limiting surrogate model complexity. Simulation is performed based on the surrogate derivative functions, preserving the nature of the dynamic system, and improving estimation accuracy. The inner loop solves the system optimization problem for a given derivative function surrogate model, and the outer loop updates the surrogate model based on optimization results. This solution approach presents unique challenges. For example, the surrogate model approximates derivative functions that depend on both design and state variables. As a result, the method must not only ensure accuracy of the surrogate model near the optimal design point in the design space, but also the accuracy of the model in the state space near the state trajectory that corresponds to the optimal design. ∗Address all correspondence to this author. This method is demonstrated using two simple design examples, followed by a wind turbine design problem. In the last example, system dynamics are modeled using a linear state-dependent model where updating the system matrix based on state and design variable changes is computationally expensive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

Trajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control

In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...

متن کامل

Friction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique

Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM

In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013